Minicurso: Curves over a finite field – Herivelto Borges (USP) – 26, 28 de fevereiro e 1 de março

Horário: 14h.

Sala: 407 – Bloco H – Gragoatá.

Professor: Herivelto Borges (USP).

Pré-requisitos: noções básicas sobre corpos finitos e curvas algébricas.

Programação:

• Fq rational places, divisors and linear series.

• The Stöhr-Voloch theorem.

• Frobenius classicality with respect to lines.

• Frobenius classicality with respect to conics.

• The dual of a Frobenius non-classical curve.

• Zeta-function and curves with many rational points.

• The Zeta-function of a curve over a finite field.

• The Hasse-Weil theorem.

• Asymptotic bounds.

• Elliptic curves over Fq.

• Background on maximal curves.

• Castelnuovo’s number.

• Plane maximal curves and maximal curves of Hurwitz type.

• Non-isomorphic maximal curves.

Se o tempo permitir, incluiremos resultados mais recentes.

Referências:

[1] Arakelian N., Borges H., Bounds for the number of points on curves over finite fields, Israel Journal of Math. 228, (2018) 177-199.

[2] Hirschfeld, J.W.P., Korchmáros G., Torres F., Algebraic curves over a finite field, Princeton Series in App. Math., 2008.

[3] Stöhr K.O., Voloch J.F., Weierstrass points and curves over finite fields, Proc. London Math. Soc. 52(1986) 1-19.