Você pode consultar passivamente o que desejar: livros, fóruns, websites, etc. Em cada questão, indique que fontes você usou. 'Passivamente" significa que você não deve abordar a questão (ou partes dela) com qualquer outro humano, seja pessoalmente, por e-mail, por áudio, num fórum da web, etc. Você não precisa digitar suas respostas; você pode, se desejar, escrever em papel e submeter 'scans' de seu trabalho. Isto dito, por favor, confirme a legibilidade do trabalho submetido.

1. Encontre as possíveis formas canônicas de Jordan e as forma racionais das matrizes $A \in M_{10\times 10}(\mathbb{R})$ que possuem polinômio caraterístico $p_A(x) = x^2(x+1)^4(x+2)^4$ e tais que

$$\dim \text{Nucleo}(A) = 1$$
, $\dim \text{Nucleo}(A+I) = 3$ e $\dim \text{Nucleo}(A+2I) \ge 2$.

2. Seja A uma matriz em $M_{n\times n}(F)$ tal que

$$tr(A) = tr(A^2) = \dots = tr(A^n) = tr(A^{n+1}),$$

onde tr(B) é o traço da matriz B.

- a) Mostre que $tr(A^m) = tr(A)$ para todo $m \ge 1$;
- b) Mostre que o polinômio minimal de A é da forma $x^p(x-1)^q$.
- 3. Seja \mathcal{F} um subconjunto de L(V,V) onde V é um espaço vetorial de dimensão finita e positiva. Suponha que todo par (T,W), formado por um elemento T de \mathcal{F} e um subespaço T-invariante W de V com $\dim(W) \geq 1$, cumpre que T possui um autovetor em W. Suponha que ST = TS para quaisquer $S,T \in \mathcal{F}$. Mostre que todos os operadores de \mathcal{F} possuem um autovetor comum.
- 4. Sejam $A, B \in M_{n \times n}(\mathbb{C})$. Suponha que
 - Os polinômios característicos p_A e p_B de A e B são iguais,
 - \bullet os polinômios minimos m_A e m_B de A e B são iguais e
 - $\frac{p_A}{m_A} = \frac{p_B}{m_B}$ e $\frac{p_A}{m_A}$ é um produto $(x c_1)(x c_2) \dots (x c_k)$ de fatores lineares distintos.

Mostre que A e B são matrizes semelhantes.

- 5. Seja $T \in L(V, V)$ um operador de um espaço com produto interno complexo de dimensão finita. Mostre ou dê um contraexemplo:
 - a) Se T possui exatamente 2 autovalores 1 e -1 e Nuc $(T-I) \subset (\text{Nuc}(T+I))^{\perp}$, então T é normal.
 - b) Se T possui exatamente 2 autovalores 1 e -1 e Nuc $(T-I) = (\text{Nuc}(T+I))^{\perp}$, então T é autoadjunto.