Notícias

Seminário de Geometria Algébrica e Geometria Complexa – Thiago Fassarella (UFF) – 25/10

Car@s colegas,

Segue abaixo as informações do nosso próximo Seminário de Geometria Algébrica e Geometria Complexa da UFF. 

Para consultar os próximos seminários e o histórico, basta consultar o site do Grupo de Geometria Algébrica e Complexa da UFF:

https://sites.google.com/view/geoalgcompluff

Palestrante: Thiago Fassarella do Amaral (UFF)

Título:Aplicações polares tóricas e classes características

Resumo:A aplicação polar tórica associada a uma hipersuperfície no toro complexo (\mathbb C^*)^n estende a aplicação de Gauss logarítmica, introduzida por Kapranov nos anos 90. Vamos apresentar uma relação entre seus multigraus com a topologia do complementar da hipersuperfície, mais precisamente com os coeficientes da classe de Chern-Schwartz-MacPherson do complementar. Trabalho com Nivaldo Medeiros e Rodrigo Salomão.

Data: 25/10/2023 (Quarta-feira)

Horário: 16h

Sala: 407 – Bloco H – Gragoatá.

SEMEAR 2023 (18/10 e 19/10)

O SEMEAR (Seminário de escolha de área) é um ciclo de palestras que todos os anos procura apresentar um quadro amplo e diverso da pesquisa em Matemática tanto na UFF quanto em outros lugares.

O público alvo principal são os alunos do segundo ano de mestrado e primeiro ano de doutorado em Matemática, mas todos com um gosto por boa Matemática são muito bem vindos!

Também teremos uma palestra na qual um pesquisador no início da sua carreira falará dos desafios durante o doutorado e além do doutorado.

Seminário de Geometria Algébrica e Geometria Complexa – 06/10 – Yerika Marín e Pablo Quezada Mora – online

Caros colegas,

Seguem abaixo as informações dos nossos próximos dois Seminários de Geometria Algébrica e Geometria Complexa da UFF. 

Para consultar os próximos seminários e o histórico, basta consultar o site do Grupo de Geometria Algébrica e Complexa da UFF:

https://sites.google.com/view/geoalgcompluff

Palestrante: Yerika Marín

Título:  Generalized quasi-dihedral group acting on pseudo-real Riemann surfaces

Resumo: A closed Riemann surface of genus g \geq 2 is called pseudo-real if it has anticonformal automorphisms but no anticonformal involutions. These Riemann surfaces, together with real Riemann surfaces, form the real locus of the moduli space \mathcal{M}_g of closed Riemann surfaces of genus g \geq 2. On the other hand, pseudo-real Riemann surfaces are examples of Riemann surfaces which cannot be defined over their field of moduli [1]. In general, a finite group might not be realized as the group of conformal/anticonformal automorphisms, admitting anticonformal ones, of a pseudo-real Riemann surface, for instance, in [2], it was observed that a necessary condition for that to happen is for the group to have order a multiple of 4 . In this talk, we consider conformal/anticonformal actions of the generalized quasi-dihedral group of order 8 n,
G_n=\left\langle x, y: x^{4 n}=y^2=1, y x y=x^{2 n-1}\right\rangle \quad(\text { for } n \geq 2)
on pseudo-real Riemann surfaces. We consider two cases either G_n has anticonformal elements or G_n only contains conformal elements [3].
This is part of my Ph.D. Thesis, under the advisers Saúl Quispe and Rubén A. Hidalgo.

References
[1] M. Artebani, S. Quispe and C. Reyes. Automorphism groups of pseudoreal Riemann surfaces Journal of Pure and Applied Algebra 221 (2017), 2383-2407.
[2] E. Bujalance, M. D. E. Conder and A. F. Costa. Pseudo-real Riemann surfaces and chira regular maps, Trans. Am. Math. Soc. 362 (7) (2010), 3365-3376.
[3] R. A. Hidalgo, Y. Marín Montilla and S. Quispe. Generalized quasi-dihedral group as automorphism group of Riemann surfaces, Preprint 2022.

Data: 06/10/2023 (Sexta-feira)

Horário: 15h

Link: https://meet.google.com/mnw-coar-fji

Palestrante: Pablo Quezada Mora

Título: IHS Manifolds of K3^[2]-type with an action of Z_3^4 : A_6

Resumo:  In this talk we will study IHS manifolds of K3^[2]-type with a symplectic action of Z_3^4 : A_6, the symplectic group with the biggest order, and such that they also admit a non-symplectic automorphism. We will characterize the IHS manifolds that satisfies this, and particularly we will characterize the IHS manifold of K3^[2]-type with finite automorphism group of order 174960, the biggest possible order for the finite automorphism group of a IHS manifold of K3^[2]-type, and we will give an example of it. This is a joint work with Paola Comparin and Romain Demelle.

Data: 06/10/2023 (Sexta-feira)

Horário: 16h

Link: https://meet.google.com/mnw-coar-fji

Seminário de Geometria Algébrica e Geometria Complexa – 13/09 – Nivaldo Medeiros (UFF)

Car@s colegas,

Segue abaixo as informações do próximo Seminário de Geometria Algébrica e Geometria Complexa da UFF. 

Para consultar os próximos seminários e o histórico, basta consultar o site do Grupo de Geometria Algébrica e Complexa da UFF:

https://sites.google.com/view/geoalgcompluff

Palestrante: Nivaldo Medeiros (UFF)

Título:Classes CSM e inversas de transformações de Cremona monomiais

Resumo: Dado um mapa birracional no espaço projetivo tridimensional definido por monômios de grau $d$, provamos que sua inversa é definida por monômios de grau no máximo $d^2-d+1$. Nossa abordagem consiste em reformular o problema em termos topológicos, via o uso de classes de Chern-Schwartz-MacPherson. 

Trabalho em colaboração com Thiago Fassarella (UFF)

Data: 13/09/2023 (Quarta-feira)

Horário: 16h

Sala: 407 – Bloco H – Gragoatá.