[Verão 2025] Minicurso de Introdução a Variedades Abelianas Complexas – Juliana Coelho (UFF) e Kelyane Abreu (UFERSA) – 03 a 07 de fevereiro – 11h
Olá pessoal,
Seguem algumas informações sobre o minicurso “Introdução a Variedades Abelianas Complexas” que acontecerá na 1ª semana de fevereiro:
Data: 03 a 07 de fevereiro
Horário: 11h às 12h30
Professoras: Juliana Coelho (UFF) e Kelyane Abreu (UFERSA), com uma palestra da Profa. Anita Rojas (UChile)
Nível: Mestrado / Final de graduação
Pré-requisitos: Álgebra linear e Álgebra. Noções de Topologia e Análise Complexa (funções holomorfas) são bem-vindos mas não essenciais.
Site: https://sites.google.com/site/julianacoelhouff/pesquisa/variedades-abelianas-complexas
Notas de aula: o minicurso está baseado no texto https://sites.google.com/site/julianacoelhouff/pesquisa/variedades-abelianas-complexas
Programação: Uma variedade abeliana é essencialmente um objeto geométrico (uma variedade) que é também um grupo abeliano. O principal exemplo de variedade abeliana é a variedade Jacobiana associada a uma superfície de Riemann. O objetivo deste minicurso é introduzir a definição e principais conceitos da teoria de variedades abelianas, culminando com a definição da variedade Jacobiana.
Na aula 1 introduziremos o toro complexo, seus homomorfismos e seu dual.
Na aula 2, introduziremos polarizações, variedades abelianas e suas subvariedades abelianas.
Na aula 3 teremos uma palestra da profa. Anita Rojas (UChile) baseada no artigo [1].
Na aula 4 discutiremos decomposições de uma variedade abeliana e as relações de Riemann.
Na aula 5 faremos uma rápida introdução a superfícies de Riemann, e introduziremos a variedade Jacobiana.
Principal bibliografia:
aulas 1, 2 e 4 – Christina Birkenhake e Herbert Lange – Complex Abelian Varieties (second, augmented edition) – Springer.
aula 3 – Robert Auffarth, Herbert Lange e Anita Rojas – A criterion for an abelian variety to be non-simple – Journal of Pure and Applied Algebra 221 (8) (2017).
aula 5 – Rick Miranda – Algebraic Curves and Riemann Surfaces – Graduate Studies in Mathematics, AMS.
O minicurso será realizado no 4º andar do Bloco H – Gragoatá. Em breve informaremos a sala.
Esperamos vocês!